Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa.

نویسندگان

  • Keyur K Adhvaryu
  • Stephanie A Morris
  • Brian D Strahl
  • Eric U Selker
چکیده

The SET domain is an evolutionarily conserved domain found predominantly in histone methyltransferases (HMTs). The Neurospora crassa genome includes nine SET domain genes (set-1 through set-9) in addition to dim-5, which encodes a histone H3 lysine 9 HMT required for DNA methylation. We demonstrate that Neurospora set-2 encodes a histone H3 lysine 36 (K36) methyltransferase and that it is essential for normal growth and development. We used repeat induced point mutation to make a set-2 mutant (set-2(RIP1)) with multiple nonsense mutations. Western analyses revealed that the mutant lacks SET-2 protein and K36 methylation. An amino-terminal fragment that includes the AWS, SET, and post-SET domains of SET-2 proved sufficient for K36 HMT activity in vitro. Nucleosomes were better substrates than free histones. The set-2(RIP1) mutant grows slowly, conidiates poorly, and is female sterile. Introducing the wild-type gene into the mutant complemented the defects, confirming that they resulted from loss of set-2 function. We replaced the wild-type histone H3 gene (hH3) with an allele producing a Lys to Leu substitution at position 36 and found that this hH3(K36L) mutant phenocopied the set-2(RIP1) mutant, confirming that the observed defects in growth and development result from inability to methylate K36 of H3. Finally, we used chromatin immunoprecipitation to demonstrate that actively transcribed genes in Neurospora crassa are enriched for H3 methylated at lysines 4 and 36. Taken together, our results suggest that methylation of K36 in Neurospora crassa is essential for normal growth and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein phosphatase PP1 is required for normal DNA methylation in Neurospora.

Covalent modifications of histones integrate intracellular and extracellular cues to regulate the genome. H3 Lys 9 methylation (H3K9me) can direct heterochromatin formation and DNA methylation, while phosphorylation of H3 Ser 10 (H3S10p) drives gene activation and chromosome condensation. To examine the relationship between H3S10p, H3K9me, and DNA methylation in Neurospora crassa, we built and ...

متن کامل

H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa.

Neurospora crassa utilizes DNA methylation to inhibit transcription of heterochromatin. DNA methylation is controlled by the histone methyltransferase DIM-5, which trimethylates histone H3 lysine 9, leading to recruitment of the DNA methyltransferase DIM-2. Previous work demonstrated that the histone deacetylase (HDAC) inhibitor trichostatin A caused a reduction in DNA methylation, suggesting i...

متن کامل

Neurospora Importin α Is Required for Normal Heterochromatic Formation and DNA Methylation

Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify a...

متن کامل

Regional control of histone H3 lysine 27 methylation in Neurospora.

Trimethylated lysine 27 on histone H3 (H3K27me3) is present in Drosophila, Arabidopsis, worms, and mammals, but is absent from yeasts that have been examined. We identified and analyzed H3K27me3 in the filamentous fungus Neurospora crassa and in other Neurospora species. H3K27me3 covers 6.8% of the N. crassa genome, encompassing 223 domains, including 774 genes, all of which are transcriptional...

متن کامل

DCAF26, an Adaptor Protein of Cul4-Based E3, Is Essential for DNA Methylation in Neurospora crassa

DNA methylation is involved in gene silencing and genome stability in organisms from fungi to mammals. Genetic studies in Neurospora crassa previously showed that the CUL4-DDB1 E3 ubiquitin ligase regulates DNA methylation via histone H3K9 trimethylation. However, the substrate-specific adaptors of this ligase that are involved in the process were not known. Here, we show that, among the 16 DDB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 4 8  شماره 

صفحات  -

تاریخ انتشار 2005